首页> 外文OA文献 >Towards an ultra‐low‐power low‐cost wireless visual sensor node for fine‐grain detection of forest fires
【2h】

Towards an ultra‐low‐power low‐cost wireless visual sensor node for fine‐grain detection of forest fires

机译:迈向用于森林火灾细粒度检测的超低功耗,低成本无线视觉传感器节点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advances in electronics, sensor technologies, embedded hardware and software are boosting the\udapplication scenarios of wireless sensor networks. Specifically, the incorporation of visual capabilities into\udthe nodes means a milestone, and a challenge, in terms of the amount of information sensed and\udprocessed by these networks. The scarcity of resources – power, processing and memory – imposes strong\udrestrictions on the vision hardware and algorithms suitable for implementation at the nodes. Both,\udhardware and algorithms must be adapted to the particular characteristics of the targeted application. This\udpermits to achieve the required performance at lower energy and computational cost. We have followed\udthis approach when addressing the detection of forest fires by means of wireless visual sensor networks.\udFrom the development of a smoke detection algorithm down to the design of a low‐power smart imager,\udevery step along the way has been influenced by the objective of reducing power consumption and\udcomputational resources as much as possible. Of course, reliability and robustness against false alarms\udhave also been crucial requirements demanded by this specific application. All in all, we summarize in this\udpaper our experience in this topic. In addition to a prototype vision system based on a full‐custom smart\udimager, we also report results from a vision system based on ultra‐low‐power low‐cost commercial imagers\udwith a resolution of 30×30 pixels. Even for this small number of pixels, we have been able to detect smoke\udat around 100 meters away without false alarms. For such tiny images, smoke is simply a moving grey stain\udwithin a blurry scene, but it features a particular spatio‐temporal dynamics. As described in the manuscript,\udthe key point to succeed with so low resolution thus falls on the adequate encoding of that dynamics at\udalgorithm level
机译:电子,传感器技术,嵌入式硬件和软件的进步正在推动无线传感器网络的应用场景。具体地说,就这些网络所感测和处理的信息量而言,将视觉功能整合到节点中既是里程碑,也是挑战。资源(电源,处理和内存)的稀缺性对适用于在节点上实现的视觉硬件和算法施加了严格限制。 \ udhardware和算法都必须适应目标应用程序的特定特征。这\\以较低的能量和计算成本来实现所需的性能。在通过无线视觉传感器网络解决森林大火的检测问题时,我们遵循了这种方法。\ ud从烟雾检测算法的开发到低功耗智能成像仪的设计,\此过程中的每一个步骤都是受尽可能降低功耗和计算资源的目标的影响。当然,针对虚假警报的可靠性和鲁棒性也是此特定应用程序所要求的关键要求。总而言之,我们在本白皮书中总结了我们在该主题上的经验。除了基于全定制smart \ udimager的原型视觉系统之外,我们还报告了基于超低功耗低成本商用成像器\ ud的视觉系统的结果,其分辨率为30×30像素。即使只有这么少的像素,我们也能够在不产生误报的情况下检测到100米外的烟雾。对于这样的微小图像,烟雾只是模糊的场景中移动的灰色污渍,但是它具有特殊的时空动态。如手稿中所述,以如此低的分辨率获得成功的关键点在于,在算法水平上对该动态进行了适当的编码

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号